

Laboratory Manual

- 1) Permanganometry is the titrimetric analysis using a standard solution of potassium permanganate as the titrant. $KMnO_4$ is a strong oxidant. The pink color of very slight excess of $KMnO_4$ imparts a pink color to the titrated solution. This makes possible the detection of end point and thus $KMnO_4$ acts as a self-indicator.

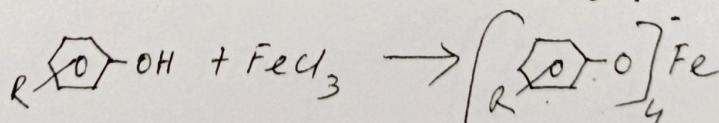
$KMnO_4$ is not a primary standard substance. So, it needs to be standardized against oxalic acid. Today the procedure of standardization of $KMnO_4$ by titration with oxalic acid will be demonstrated-

Standardization of $KMnO_4$ with standard oxalic acid solution

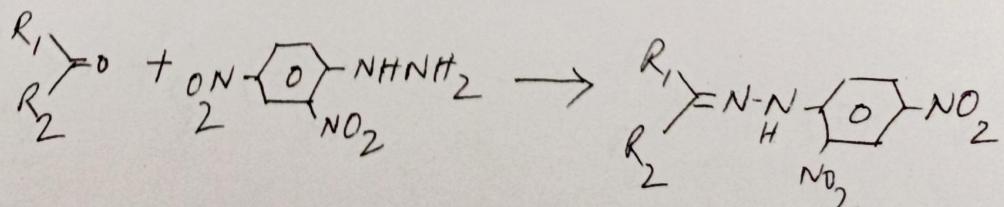
25 ml of (N/20) standard oxalic acid solution was taken in a 250 ml conical flask, 25 ml 4(N) H_2SO_4 was added and heated to 70-80°C and titrated with $KMnO_4$ solution until the solution turns light pink that is stable for about 30 seconds. Two readings were taken and the average value was used for calculation of strength of $KMnO_4$ solution.


Calculation:

$$V_1S_1 = V_2S_2$$


2) Functional Group Detection:

Functional groups assign the chemical properties to an organic compound like carboxylic acid, phenolic-OH, carbonyl, amine, nitro group etc. Detection of a few functional groups will be demonstrated today-


- Carboxylic acid (-COOH): To ethanolic solution of a pinch of sample, 1 drop of saturated $NaHCO_3$ is added. Effervescence is observed which confirms presence of -COOH functional group.

- Phenolic-OH: To ethanolic solution of sample, one drop of neutral $FeCl_3$ is added. Color change confirms presence of Phenolic-OH functional group.

- Carbonyl group: To ethanolic solution of the sample, 2 drops of 2,4-DNP solution was used. Appearance of reddish-orange precipitate, confirms presence of carbonyl functional group.

